Jump to content
Why become a member? ×

Recommended Posts

Posted

well, i am aware of the fact that there is a difference between 2, 4 and 8 ohm amps (i believe the lower it is, the higher wattage is passed?) I am just failing to understand why this difference occurs? confused! :)

Posted

[quote name='JordanRLS' post='747343' date='Feb 16 2010, 03:33 PM']well, i am aware of the fact that there is a difference between 2, 4 and 8 ohm amps (i believe the lower it is, the higher wattage is passed?) I am just failing to understand why this difference occurs? confused! :)[/quote]

<more value than you asked for>
Linear solid state amplifiers typically have (inside of them) unregulated +ve and -ve power supplies. The +ve and -ve output devices (bipolar or FET transistors) alternately progressively conduct to supply current to the load (the speakers) for each half of the signal waveform.

If a given amplifier produces, say 100W into a 16ohm load, then *if* the power supplies maintained their voltages, it would produce 200W into an 8 ohm load.

However, delivering that power actually causes most typical power supplies to "sag" their voltages, so as you halve the load, you actually get less than a doubling in power (ok, there are some other losses involved too - but sag is the main one) - so you might get 16ohm->100W, 8ohm->180W, 4ohm->320W, 2ohm->500W... A better (stiffer) power supply produces less sag, but costs more...

But halving the load, in addition to (almost) doubling the power, also doubles the output current into the load.

Most amplifiers are designed to supply sufficient current to drive down to a 4 ohm load, but some amplifiers are designed to deliver sufficient current to drive down to 2 ohms - this takes typically twice as many output devices as driving a 4 ohm load, so is more costly to manufacture. In addition, the power supply itself has to be able to deliver that additional current, and there will be more heat to get rid of, which again increases cost...

The basic thing is W= V squared / R
Watts = volts squared / resistance (in ohms)

So as the load resistance is halved, the power output is doubled (provided the maximum output voltage remains the same - which it doesn't quite...)

</more value than you asked for>

I hope this helps
Alan

Posted

[quote name='AlanP2008' post='747381' date='Feb 16 2010, 04:02 PM']<more value than you asked for>
Linear solid state amplifiers typically have (inside of them) unregulated +ve and -ve power supplies. The +ve and -ve output devices (bipolar or FET transistors) alternately progressively conduct to supply current to the load (the speakers) for each half of the signal waveform.

If a given amplifier produces, say 100W into a 16ohm load, then *if* the power supplies maintained their voltages, it would produce 200W into an 8 ohm load.

However, delivering that power actually causes most typical power supplies to "sag" their voltages, so as you halve the load, you actually get less than a doubling in power (ok, there are some other losses involved too - but sag is the main one) - so you might get 16ohm->100W, 8ohm->180W, 4ohm->320W, 2ohm->500W... A better (stiffer) power supply produces less sag, but costs more...

But halving the load, in addition to (almost) doubling the power, also doubles the output current into the load.

Most amplifiers are designed to supply sufficient current to drive down to a 4 ohm load, but some amplifiers are designed to deliver sufficient current to drive down to 2 ohms - this takes typically twice as many output devices as driving a 4 ohm load, so is more costly to manufacture. In addition, the power supply itself has to be able to deliver that additional current, and there will be more heat to get rid of, which again increases cost...

The basic thing is W= V squared / R
Watts = volts squared / resistance (in ohms)

So as the load resistance is halved, the power output is doubled (provided the maximum output voltage remains the same - which it doesn't quite...)

</more value than you asked for>

I hope this helps
Alan[/quote]

Thanks very much, very helpful :)

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Restore formatting

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Recently Browsing   0 members

    • No registered users viewing this page.
×
×
  • Create New...